Combinatorics in the group of parity alternating permutations
نویسنده
چکیده
We call a permutation parity alternating, if its entries assume even and odd integers alternately. Parity alternating permutations form a subgroup of the symmetric group. This paper deals with such permutations classified by two permutation statistics; the numbers of ascents and inversions. It turns out that they have a close relationship to signed Eulerian numbers. The approach is based on a study of the set of permutations that are not parity alternating. It is proved that the number of even permutations is equal to that of odd ones among such permutations with the same ascent number. Hence signed Eulerian numbers can be described by parity alternating permutations. Divisibility properties for the cardinalities of certain related sets are also deduced.
منابع مشابه
Combinatorial study on the group of parity alternating permutations
The combinatorial theory for the set of parity alternating permutations is expounded. In view of the numbers of ascents and inversions, several enumerative aspects of the set are investigated. In particular, it is shown that signed Eulerian numbers have intimate relationships to the set.
متن کاملParity-alternating permutations and successions
The study of parity-alternating permutations of {1, 2, . . . , n} is extended to permutations containing a prescribed number of parity successions – adjacent pairs of elements of the same parity. Several enumeration formulae are computed for permutations containing a given number of parity successions, in conjunction with further parity and length restrictions. The objects are classified using ...
متن کاملA combinatorial proof for the enumeration of alternating permutations with given peak set
Using the correspondence between alternating permutations and pairs of matchings, we present a combinatorial proof for the enumeration of alternating permutations with given peak set. Moreover, we give a refinement according to the number of left to right maxima.
متن کاملEnumeration of snakes and cycle-alternating permutations
Springer numbers are analogs of Euler numbers for the group of signed permutations. Arnol’d showed that they count some objects called snakes, which generalize alternating permutations. Hoffman established a link between Springer numbers, snakes, and some polynomials related with the successive derivatives of trigonometric functions. The goal of this article is to give further combinatorial pro...
متن کاملOn a Family of Conjectures of Joel Lewis on Alternating Permutations
We prove generalized versions of some conjectures of Joel Lewis on the number of alternating permutations avoiding certain patterns. Our main tool is the perhaps surprising observation that a classic bijection on pattern avoiding permutations often preserves the alternat-
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008