Combinatorics in the group of parity alternating permutations

نویسنده

  • Shinji Tanimoto
چکیده

We call a permutation parity alternating, if its entries assume even and odd integers alternately. Parity alternating permutations form a subgroup of the symmetric group. This paper deals with such permutations classified by two permutation statistics; the numbers of ascents and inversions. It turns out that they have a close relationship to signed Eulerian numbers. The approach is based on a study of the set of permutations that are not parity alternating. It is proved that the number of even permutations is equal to that of odd ones among such permutations with the same ascent number. Hence signed Eulerian numbers can be described by parity alternating permutations. Divisibility properties for the cardinalities of certain related sets are also deduced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial study on the group of parity alternating permutations

The combinatorial theory for the set of parity alternating permutations is expounded. In view of the numbers of ascents and inversions, several enumerative aspects of the set are investigated. In particular, it is shown that signed Eulerian numbers have intimate relationships to the set.

متن کامل

Parity-alternating permutations and successions

The study of parity-alternating permutations of {1, 2, . . . , n} is extended to permutations containing a prescribed number of parity successions – adjacent pairs of elements of the same parity. Several enumeration formulae are computed for permutations containing a given number of parity successions, in conjunction with further parity and length restrictions. The objects are classified using ...

متن کامل

A combinatorial proof for the enumeration of alternating permutations with given peak set

Using the correspondence between alternating permutations and pairs of matchings, we present a combinatorial proof for the enumeration of alternating permutations with given peak set. Moreover, we give a refinement according to the number of left to right maxima.

متن کامل

Enumeration of snakes and cycle-alternating permutations

Springer numbers are analogs of Euler numbers for the group of signed permutations. Arnol’d showed that they count some objects called snakes, which generalize alternating permutations. Hoffman established a link between Springer numbers, snakes, and some polynomials related with the successive derivatives of trigonometric functions. The goal of this article is to give further combinatorial pro...

متن کامل

On a Family of Conjectures of Joel Lewis on Alternating Permutations

We prove generalized versions of some conjectures of Joel Lewis on the number of alternating permutations avoiding certain patterns. Our main tool is the perhaps surprising observation that a classic bijection on pattern avoiding permutations often preserves the alternat-

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008